Cellular mechanisms for the slow phase of the Frank-Starling response.

نویسندگان

  • W F Bluhm
  • D Sung
  • W Y Lew
  • A Garfinkel
  • A D McCulloch
چکیده

Following a step increase in sarcomere length, isometric cardiac muscle tension increases instantaneously by the Frank-Starling mechanism. In isolated papillary muscle and myocytes, there is an additional significant rise in developed tension over the following 15 min due to an unknown mechanism. This slow change in tension could not be explained by mechanical heterogeneity of the muscle preparations or by an increase in myofilament sensitivity to Ca2+. The slow change in tension was not dependent on sarcoplasmic reticulum Ca2+ loading assessed with rapid cooling contractures, and was not significantly altered by sarcoplasmic reticulum Ca2+ depletion (ryanodine) or inhibition of sarcoplasmic reticulum Ca2+ reuptake (cyclopiazonic acid). We used the Luo-Rudy ionic model of the ventricular myocyte together with a model of the length-dependent myofilament activation by Ca2+ to examine the effects of step changes in the parameters of sarcolemmal ion fluxes as possible mechanisms for the slow change in stress. The slow increase in tension was simulated by step changes in the Na+-K+ pump or Na+ leak currents, suggesting that the slow change in stress may be caused by length induced changes in Na+ fluxes. The model also predicted a slow increase in the magnitude of the initial repolarization during phase 1 of the action potential. The combination of experimental and computational models used in this investigation represents a valuable technique in elucidating the cellular mechanisms of fundamental processes in cardiac excitation-contraction coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Termination of Nociceptive Bahaviour at the End of Phase 2 of Formalin Test is Attributable to Endogenous Inhibitory Mechanisms, but not by Opioid Receptors Activation

Introduction: Formalin injection induces nociceptive bahaviour in phase I and II, with a quiescent phase between them. While active inhibitory mechanisms are proposed to be responsible for initiation of interphase, the exact mechanisms which lead to termination of nociceptive response in phase II are not clear yet. Phase II is a consequence of peripheral and central sensitization processes, whi...

متن کامل

Endothelin-1 contributes to the Frank-Starling response in hypertrophic rat hearts.

Endothelin-1 is involved in mechanical load-induced cardiac growth processes; it also has effects on contractility. The interaction of endothelin-1 and the Frank-Starling response is unknown. The present study aimed to characterize the role of endothelin-1 in the regulation of the Frank-Starling response, one of the major mechanisms regulating cardiac contractile force, in both normal and hyper...

متن کامل

A role for the sarcolemmal Na(+)/H(+) exchanger in the slow force response to myocardial stretch.

Although the contractile performance of the myocardium is under continuous nervous and hormonal regulation, the myocardium possesses a number of intrinsic, load-dependent mechanisms by which it can adjust cardiac output to meet the needs of the circulation over periods ranging from seconds to years. In isolated hearts, an increase in ventricular end-diastolic volume (EDV), produced by increased...

متن کامل

Exploring cardiac biophysical properties

The heart is subject to multiple sources of stress. To maintain its normal function, and successfully overcome these stresses, heart muscle is equipped with fine-tuned regulatory mechanisms. Some of these mechanisms are inherent within the myocardium itself and are known as intrinsic mechanisms. Over a century ago, Otto Frank and Ernest Starling described an intrinsic mechanism by which the hea...

متن کامل

Rainbow trout myocardium does not exhibit a slow inotropic response to stretch.

Mammalian myocardial studies reveal a biphasic increase in the force of contraction due to stretch. The first rapid response, known as the Frank-Starling response, occurs within one heartbeat of stretch. A second positive inotropic response occurs over the minutes following the initial stretch and is known as the slow force response (SFR). The SFR has been observed in mammalian isolated whole h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of electrocardiology

دوره 31 Suppl  شماره 

صفحات  -

تاریخ انتشار 1998